Indonesian Biotechnology Information Centre
Biotechnology for the welfare of people

NEWS RELEASE

ARTICLE

ARTICLE

Grow Faster, Grow Stronger: Speed-Breeding Crops to Feed the Future

Date: 17 June 2019 | Source: The New York Times | Author: Knvul Sheikh

Plant breeders are fast-tracking genetic improvements in food crops to keep pace with global warming and a growing human population.

 

Farmers and plant breeders are in a race against time. The world population is growing rapidly, requiring ever more food, but the amount of cultivable land is limited. Warmer temperatures have extended growth seasons in some areas — and brought drought and pests to others.

 

“We face a grand challenge in terms of feeding the world,” said Lee Hickey, a plant geneticist at the University of Queensland in Australia. “If you look at the stats, we’re going to have about 10 billion on the planet by 2050 and we’re going to need 60 to 80 percent more food to feed everybody. It’s an even greater challenge in the face of climate change and diseases that affect our crops that are also rapidly evolving.”

 

But plant breeding is a slow process. Developing new kinds of crops — higher yield, more nutritious, drought- and disease-resistant — can take a decade or more using traditional breeding techniques. So plant breeders are working on quickening the pace.

 

Dr. Hickey’s team has been working on “speed breeding,” tightly controlling light and temperature to send plant growth into overdrive. This enables researchers to harvest seeds and start growing the next generation of crops sooner.

 

Their technique was inspired by NASA research into how to grow food on space stations. They trick the crops into flowering early by blasting blue and red LED lights for 22 hours a day and keeping temperatures between 62 and 72 degrees Fahrenheit. Last November, in a paper in Nature, they showed that they can grow up to six generations of wheat, barley, chickpeas and canola in a year, whereas traditional methods would only yield one or two.

 

On Monday in Nature Biotechnology, Dr. Hickey and his team highlight the potential of speed breeding, as well as other techniques that may help improve food security. Combining speed breeding with other state-of-the-art technologies, such as gene editing, is the best way to create a pipeline of new crops, according to the researchers.

 

“What we’re really talking about here is creating plant factories on a massive scale,” Dr. Hickey said.

 

A new era in plant research has arrived, says Charlie Brummer, director of the Plant Breeding Center at the University of California, Davis, who was not involved in the work. Breeders and breeding companies have always tried to minimize the time it takes to develop a new variety of crops, but with new technologies like speed breeding, “we can do it better now than we could in the past,” he said.

 

Botanists first started growing plants under artificial light — carbon arc lamps — 150 years ago. Since then, advances in LED technology have vastly improved the precision with which scientists can adjust and customize light settings to individual crop species.

 

Researchers have also adopted new genetic techniques to optimize flowering times and make plants more resistant to the rigors of a warming planet. Unlike older crossbreeding and crop modification techniques, newer tools like Crispr allow scientists to snip out portions of the plant’s own DNA that may make it vulnerable to disease. Dr. Hickey and his team are working on adding Crispr machinery directly into barley and sorghum saplings, in order to modify the plants’ genes while simultaneously speed breeding them.